SRI BALAJI CHOCKALINGAM
ENGINEERING COLLEGE, ARNI

William Stallings
Computer Organization
and Architecture

Chapter 3
Instruction Cycle Review
System Buses

Faculty Name : T.Karthikeyan
HOD/AP/CSE

Simple Bus Architecture

* A simplified motherboard of a personal computer (top view):

il |== Plug-in card
=283 1/0 bus connector
ol R |

Integrated Circuits

0000

1/O Bus € " “ “

Motherboard
L~

Board traces

Ve (wires)

Connectors for plug-in cards

Architecture Review - Program

Concept

signals

_ Instruction
Instruction Codes — | |nterpreter

& Hardwired systems are inflexible
[~lLots of work to re-wire, or re-toggle

& General purpose hardware can do different
tasks, given correct control signals

& Instead of re-wiring, supply a new set of control

)

Control
Signals

General
Purpose
Logic

T

Data

— Results

What is a program?

&6 Software
[AIA sequence of steps

[~IFor each step, an arithmetic or logical operation is
done

[~IFor each operation, a different set of control signals
is needed — i.e. an instruction

Function of Control Unit

&8 For each operation a unique code is provided
~le.g. ADD, MOVE

& A hardware segment accepts the code and
issues the control signals

& We have a computer!

Components

&8 Central Processing Unit
[~lControl Unit
[~lArithmetic and Logic Unit

& Data and instructions need to get into the CPU
and results out
AlInput/Output
& Temporary storage of code and results is
needed
[~IMain memory

Computer Components:

Top Level View

CPU
PC MAR
IR MBR
I/O AR
I/0 BR

1/0 Module

Bullers

Memory

Instruction

Instruction

Instruction

Data

Daita

Data

Data

rC

IR
MAR
MBR
/O AR
/0 BR =

Program counler
Instruction register
Memory address register
Memory buller register
1/0) address register

1/0) bulTer register

Simplified Instruction Cycle

36 Two steps:
[AlFetch
~lExecute

Fetch Cycle Execute Cycle

Execute
Instruction

Feteh MNext
Instruction

Fetch Cycle

&8 Program Counter (PC) holds address of next
instruction to fetch

&8 Processor fetches instruction from memory
location pointed to by PC

8 Increment PC
[AlUnless told otherwise
> Instruction loaded into Instruction Register (IR)

> Processor interprets instruction and performs
required actions

Qo Qo

Execute Cycle

#6 Processor-memory
[~ldata transfer between CPU and main memory

38 Processor 1/0
[~AIData transfer between CPU and I/O module

36 Data processing
[~AISome arithmetic or logical operation on data

& Control
[~lAlteration of sequence of operations
[~le.g. jump

¢ Combination of above

Hypothetical Machine

& Instruction Format - Address range?

Opcode | Address

0

34

36 Integer Format - Data range?

15

S

Magnitude

0

1

36 Registers

[~IPC = Program Counter, IR = Instruction Register, AC =
Accumulator

&6 Partial List of Opcodes
[~A10001 = Load AC from Memory
[~10010 = Store AC to Memory
[~10101 = Add to AC from Memory

15

Example of Program Execution

Memory CPLU Registers Memory CPU Registers
W1 9 4 0 |30 0/PC |300[1 9 40 3 0 0frC
N5 9 4 ACT 3OS 9 4 1 I e
0229 4 1 1 O 4 O)IR 30224941 1 94 0IR
940[T T 0 3 040[0 0 0 3
Q410 00 2 9310 0 0 2
Step | Step 2

Memory CPU Registers Memory CPU Registers
W01 8 4 0 30 1|PC | 300[1 9 40 30 1| PC
W5 94 1 000 3[AC,301E 9 4 1 00 5[ALC
W22 9 41 1)]5 O 4 1{IR 3021249 41 gi I S I 1 4
L 1) [r-1] 3 L (D 1:1-[] 3 I+2=5
94110 00 2 YA 0O 0 l—h——“!

Atep 3 Slep 4

Memory CPU Registers Memory CPLU Registers
LINEEND 30 2|PC J300[1 9 40 30 2] PC
5 9 4] o0 51 ACH3MNS O 4 1 000 5] AC
W2 9 4 I—m2 b 4] IR 302129 4 1 294 1|IR

TR
i 0

L [r-1] 3 L)
G410 0 0 441

| ¥]

Step 5 SLep f

Modifications to Instruction
Cycle

& Simple Example
[~lAlways added one to PC
[AlEntire operand fetched with instruction

& More complex examples
[AIMight need more complex instruction address calculation
[XIConsider a 64 bit processor, variable length instructions

[AlInstruction set design might require repeat trip to memory to
fetch operand

[X1In particular, if memory address range exceeds word size
[~A10perand store might require many trips to memory
[XIVector calculation

Instruction Cycle -
State Diagram

Operand
store

Multple

operands

Multiple
resulis

Instructio
operation
decoding

(rperand
address
calculation

Operand
address
calculatio

Data
Operation

calculatio

Ketum for string
or vector data

Instruction complete,
feteth next nsiruction

Start Here

Introduction to Interrupts

& We will have more to say about interrupts later!

&6 Interrupts are a mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of processing

& Four general classes of interrupts
[~AIProgram - e.g. overflow, division by zero
[~ Timer
[XIGenerated by internal processor timer
[XIUsed in pre-emptive multi-tasking
[A11/0O - from I/O controller

Hardware failure
[Xle.g. memory parity error

& Particularly useful when one module is much slower than
another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)

Interrupt Examples

Llser
Proveram

WHITT

WRITE

[A0)

Program
| | ,,1 - T1
I]
! A €
| AT '
I b ——
| [| [40)
u P : Commanid
o ! | - T
b= | I
l e ' (5]
I ! -‘r--h_ I
| ! It IR
I f / ND
| ! £
I
i

A

14
15
!I.I' s
/

E r

I
i
¢

Llser
Program

WHITE

WRITE

WRITE

Iff s -

-

[0
E‘m_-_ﬁHu

10
Comumand

[nterrupt
Handler

(3

NI

Llser
Program

WRITE

- ——————

g, —————

r T-_—\..

1\.:-—________
- -
-

¥

[0
Program
,-': -1
|
@
1
- [0

Comumanid

[nterrupt
Handler

@

NI

{a) No intermupts

by Interrupts; short O wail

(¢h Interrupts; long 10wl

Interrupt Cycle

&8 Added to instruction cycle

& Processor checks for interrupt
[AlIndicated by an interrupt signal

& If no interrupt, fetch next instruction

& If interrupt pending:
[A1Suspend execution of current program
[~lSave context (what does this mean?)
[~1Set PC to start address of interrupt handler routine
Process interrupt
[~lRestore context and continue interrupted program

Instruction Cycle (with
Interrupts) - State Diagram

Operand
store

Mlultiple
resulis

Operand

Operand

. Data
operation address Operation address
decoding caleulation pe caleulatio
. . No
[nstruction complets, Feturn lor string

: ; h inLerrup
feteth next instruction o vector data

Multiple Interrupts

& Disable interrupts — Sequential Processing

[~IProcessor will ignore further interrupts whilst
processing one interrupt

[AlInterrupts remain pending and are checked after first
interrupt has been processed

[AlInterrupts handled in sequence as they occur

&t Define priorities — Nested Processing

[~lLow priority interrupts can be interrupted by higher
priority interrupts

[AIWhen higher priority interrupt has been processed,
processor returns to previous interrupt

Multiple Interrupts - Sequential

Interrupt
User Program Handler X
= I 1
= | _ I
= | __,,.-"f I
= | P |
= | - |
— e |
= : Ir"" |
= |- |
E e Sl SR :
E IH-\"-—\, _|.‘_-‘_-‘-_l”'-\-_:—_—|_--.‘__‘_
= | [~ T Interrupt
— - —— .
= : e~ e Handler ¥
= S _'-l__l__l_
= I 1-\'-\-.. e
= | e |
— I H‘"-uq_‘ |
— - |
= | -
= | T |
— ~ . I
= | s |
— | -\H"\-\._‘_ I
—t - I
= | -
— v - |
=]

Disabled Interrupts — Nice and Simple

Multiple Interrupts - Nested

Interrupt
LUser Program Handler X
— I |
- | I
— - |
= | -
= | . |
E | _,."". M"-\.\,
= I 2 [* -H-h"-,_
— - .
= l‘_ﬂ' I "“-\.H ‘-u_‘_-‘.
E i-___-'__"_—-l——..__‘__‘__ } -h'.'n H"'\-.._x
= . ~.. Interrupt
-_— .\ -~)
= | .. ~.._Handler ¥
E | . -ﬁ'hh
= | ., |
= | " |
= o
= | N |
p— I - |
= | t |
= | - |
=N -
= ¥ 5 |

How to handle state with an arbitrary number of interrupts?

Sample Time Sequence of
Multiple Interrupts

Priority 2 Priority 5 Priority 4
User Program Printer ISR Comm ISR Disk ISR
=0 t=15
t=10
<?25
t=25
\ \
t=40 t=35

Disk can’t interrupt higher priority Comm
Note: Often low numbers are higher priority

Connecting

F All the units must be connected

& Different type of connection for different type of
unit

[~IMemory

AlInput/Output

~ICPU

Memory Connection

& Memory typically consists of N words of equal length
addressed from 0 to N-1

3 Receives and sends data
[~AITo Processor
[~A1To I/O Device

& Receives addresses (of locations)
&8 Receives control signals

[~AIRead

[~ Write

[~ Timing

Input/Output Connection(1)

& Functionally, similar to memory from internal viewpoint
&6 Instead of N words as in memory, we have M ports

Output

[~lReceive data from computer
[~A1Send data to peripheral

38 Input

[~1Receive data from peripheral
[~A1Send data to computer

Input/Output Connection(2)

> Receive control signals from computer

> Send control signals to peripherals
[~le.g. spin disk

&8 Receive addresses from computer

[~le.g. port number to identify peripheral

& Send interrupt signals (control)

QoD QoD

CPU Connection

&6 Sends control signals to other units
&8 Reads instruction and data

& Writes out data (after processing)

& Receives (& acts on) interrupts

Buses

&8 There are a number of possible interconnection
systems. The most common structure is the
bus

&t Single and multiple BUS structures are most
common

¢ e.g. Control/Address/Data bus (PC)
Fe.g. Unibus (DEC-PDP) — replaced the Omnibus

What is a Bus?

& A communication pathway connecting two or more
devices

&8 Usually broadcast
[~lEveryone listens, must share the medium
[~]Master — can read/write exclusively, only one master
[~1Slave — everyone else. Can monitor data but not produce
&6 Often grouped
[A1A number of channels in one bus
[Ale.g. 32 bit data bus is 32 separate single bit channels
& Power lines may not be shown

& Three major buses: data, address, control

Bus Interconnection Scheme

{ CPU Memory H soe [Memory /O soe 1/0 H

Control Lines
[1] | L] | LI | [1]

Address Lines Bus
| | | | | | I

Data Lines

Data Bus

&6 Carries data
[~IRemember that there is no difference between
“data” and “instruction” at this level
8 Width is a key determinant of performance
[~18, 16, 32, 64 bit

[AlWhat if the data bus is 8 bits wide but instructions
are 16 bits long?

[AlWhat if the data bus is 64 bits wide but instructions
are 16 bits long?

Address bus

&6 Identify the source or destination of data
[A1In general, the address specifies a specific memory address or a
specific I/O port
& e.g. CPU needs to read an instruction (data) from a
given location in memory

&8 Bus width determines maximum memory capacity of
system

[~18086 has 20 bit address bus but 16 bit word size for 64k directly
addressable address space

[A1But it could address up to 1MB using a segmented memory
model

XIRAM: 0 — BFFFF, ROM: C0000 - FFFFF

XIDOS only allowed first 640K to be used, remaining memory for
BIOS, hardware controllers. Needed High-Memory Manager to
“break the 640K barrier”

Control Bus

& Control and timing information
[~ Determines what modules can use the data and address lines
[A1If a module wants to send data, it must (1) obtain permission to
use the bus, and (2) transfer data — which might be a request
for another module to send data
&6 Typical control lines
[~IMemory read
Memory write
[AI1/O read
[AIT/O write
Interrupt request
[~l Interrupt ACK
[~]Bus Request
[~1Bus Grant
[~lClock signals

Big and Yellow?

FEWhat do buses look like?
[AlParallel lines on circuit boards
[AIRibbon cables

[(AIStrip connectors on mother boards
[xle.g. PCI

[~1Sets of wires
&t Limited by physical proximity — time delays, fan
out, attenuation are all factors for long buses

Single Bus Problems

3£ Lots of devices on one bus leads to:
[~ Propagation delays

[XILong data paths mean that co-ordination of bus use can adversely affect
performance — bus skew, data arrives at slightly different times

[X1If aggregate data transfer approaches bus capacity. Could increase bus
width, but expensive

Device speed
[XIBus can’t transmit data faster than the slowest device

[XISlowest device may determine bus speed!

* Consider a high-speed network module and a slow serial port on the same
bus; must run at slow serial port speed so it can process data directed for it

Power problems

3 Most systems use multiple buses to overcome these
problems

Traditional (ISA)
(with cache)

Processor

% Cache

Local 170
Main controller
Memory
system Bus

MNetwork

| L

S0

Fxpansion
bus interface

/

Maodem

Buffers data
transfers
between
system,
expansion bus

Serial

Expansion Bus

This approach breaks down as I/O devices need higher performance

High Performance Bus -
Mezzanine Architecture

Addresses higher speed I/O devices by moving up in the hierarchy

‘ Modem

Main
Menory
rOces Local Bus Cache System Bus
Processo {Bridge | AL :
SCSI Pl3%4 Graphic Videno LAN
High-5peed Bus
FAX Expansion iy
bus interface Serial

Expansion Bus

3200 MB/sac 3200 MB/sec
400-MHz 512KB-2MB 400-MHz 512KB-2MB
Core Cache Core Cache

Bridge
Based

800 MB/zac

100-MHz
B u S ﬂ r System Bus
AGP Intel 440GX 100 MHz 2GB
AGP 2X
. : AGPset 100-MH
ch I te ct u re Graphics £33 MB/sac (Host Bridge) BOO MB/zec EDRAHZ
133 MB/sec I 33-MHz PCI Bus
USB #2
Interface 15MBisec USB #1 Elrilgge '
" 33 MB/sac
« Bridging with |
- Snapshot
dual Pentium Il a|l Camera Mouse CD-ROM
Xeon proces- = |
sors on Slot 2 || ® = D= Dus it
(Source: http:// — =
';?;ﬁ E'?;E I I 16.7 MBlsec I I

www.intel.com.)

Ethernet .
Interface Keyboard Audio

Direct Memory Access

DMA Transfer from Disk to Memory
Bypasses the CPU

Memory

Without DMA : With DMA

DMA Flowchart for a Disk Transfer
(B)

l

CPU sets up disk for
DMA transfer

DMA device begins
transfer independent of
CPU

L4
L4
+
+,
*

" DMA device
L J ,~* interrupts CPU

CPU executes r when finished
another process

(Continue)

Bus Types

S Dedicated

[~lSeparate data & address lines

> Multiplexed
[~AIShared lines

[~IConsider shared address, data lines
[XINeed separate Address valid or Data valid control line
XITime division multiplexing in this case

[~lAdvantage - fewer lines
[~IDisadvantages

[XIMore complex control
XIUltimate performance

Bus Arbitration

& More than one module may want to control the
bus

[~le.g. I/O module may need to send data to memory
and to the CPU

&8 But only one module may control bus at one
time
[~lArbitration decides who gets to use the bus

[~lArbitration must be fast or I/O devices might lose
data

&8 Arbitration may be centralized or distributed

Centralized Arbitration

&6 Single hardware device is responsible for
allocating bus access

[~1Bus Controller

[~lArbiter

#8 May be part of CPU or separate

Distributed Arbitration

& No single arbiter
#6 Each module may claim the bus

& Proper control logic on all modules so they behave to
share the bus

& Purpose of both distributed and centralized is to
designate the master

& The recipient of a data transfer is the slave

& Many types of arbitration algorithms: round-robin,
priority, etc.

Bus Arbitration

Bus request

T 2 {
(@) | Arbiter | Bus grant

v Y Y !
o/

* (a)Simple - -
centralized bus 0 l 2 SN
arbitration; (b)
centralized < Bus request level
arbitration with b) | Arbiter | : Bus request level &

priority levels; (c) _d’ _d !PL

decentralized bus Bus grant level 0/ [\ \"/ \ S/

arbitration. Bus grant level i 0 | b .. N

(Adapted from

[Tanenbau m, Bus request

1999]) Busy

[':} +5V

. . . Bus gm{t L L L *
Daisy Chaining ; , N I
of devices

What if a device breaks? Devices to left higher priority

Bus Arbitration
Implementations - Centralized

3£ Centralized

[A1If a device wants the bus, assert bus request
[~lArbiter decides whether or not to send bus grant
Bus grant travels through daisy-chain of devices

[A1If device wants the bus, it uses it and does not propagate bus
grant down the line. Otherwise it propagates the bus grant.

[~lElectrically close devices to arbiter get first priority
& Centralized with Multiple Priority Levels

[~A1Can add multiple priority levels, grants, for more flexible
system. Arbiter can issue bus grant on only highest priority line

Bus Arbitration Implementation
- Decentralized

& Decentralized

[AIIf don't want the bus, propagate bus grant down the
line

[~AITo acquire bus, see if bus is idle and bus grant is on

[X1If bus grant is off, may not become master, propagate
negative bus grant

[X1If bus grant is on, propagate negative bus grant
[~AIWhen dust settles, only one device has bus grant
[~lAsserts busy on and begins transfer
[~lLeftmost device that wants the bus gets it

Timing

5 Co-ordination of events on bus

> Synchronous

[~lIEvents determined by clock signals
[~lControl Bus includes clock line

[~IA single 1-0 is a bus cycle

[AIAIl devices can read clock line
[~lUsually sync on leading edge
[~lUsually a single cycle for an event

Qo QoD

100 MHz Bus Clock

1 01 0 1 0 1 0

- ' +
Crystal |_| _l Logical 1 (+5V)
Oscillator —» <«— Logical 0 (0V)
e

10 ns

100 million cycles per second
1 cycle in (1/100,000,000) seconds = 0.0000001s =10 ns

In reality, the clock is a bit more sawtoothed

/N N\

Synchronous Timing Diagram
Read Operation Timing

Clock

Start

Read

Address
Lines

Dala
Lines

Acknowledge

Indicates read/address lines valid, noticed by memory

Indicates we want to read, not write

Address from memory we want

delay

Data from memory

Indicates data lines valid

Synchronous - Disadvantages

are some disadvantages

[~lEverything done in multiples of c
finishing in 3.1 cycles takes 4 cyc

AIWith a mixture of fast and slow ¢
wait for the slowest device

&6 Although synchronous clocks are simple, there

ock, so something
es

evices, we have to

[X]IFaster devices can't run at their capacity, all devices are tied

to a fixed clock rate

[XIConsider memory device speed faster than 10ns, no

speedup increase for 100Mhz clock

&8 One solution: Use asynchronous bus

Asynchronous Bus

S No clock

5 Occurrence of one event on the bus follows and
depends on a previous event

& Requires tracking of state, hard to debug, but
potential for higher performance

Qnp QD

& Also used with networking
[~IProblem with “drift” and loss of synchronization
[~AISome use self-clocking codes, e.g. Ethernet

Asynchronous Timing Diagram

Asserted once read/address lines stabilize
Deasserted when finished reading

MSYN i i

Master synC

Slave = memory, ACK’s master sync

SSYN | Iy, Master reads the data from the data bus
Slave sync
Read [

Address

Lines L"

Slave places requested data on bus
Data ‘_.l
Lines

