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Simple Bus Architecture

* A simplified motherboard of a personal computer (top view):
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Architecture Review - Program
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& Hardwired systems are inflexible
[~lLots of work to re-wire, or re-toggle

& General purpose hardware can do different
tasks, given correct control signals

& Instead of re-wiring, supply a new set of control
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What is a program?

&6 Software
[AIA sequence of steps

[~IFor each step, an arithmetic or logical operation is
done

[~IFor each operation, a different set of control signals
is needed — i.e. an instruction




Function of Control Unit

&8 For each operation a unique code is provided
~le.g. ADD, MOVE

& A hardware segment accepts the code and
issues the control signals

& We have a computer!



Components

&8 Central Processing Unit
[~lControl Unit
[~lArithmetic and Logic Unit

& Data and instructions need to get into the CPU
and results out
AlInput/Output
& Temporary storage of code and results is
needed
[~IMain memory




Computer Components:

Top Level View
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Simplified Instruction Cycle

36 Two steps:
[AlFetch
~lExecute

Fetch Cycle Execute Cycle

Execute
Instruction

Feteh MNext
Instruction




Fetch Cycle

&8 Program Counter (PC) holds address of next
instruction to fetch

&8 Processor fetches instruction from memory
location pointed to by PC

8 Increment PC
[AlUnless told otherwise
> Instruction loaded into Instruction Register (IR)

> Processor interprets instruction and performs
required actions

Qo Qo



Execute Cycle

#6 Processor-memory
[~ldata transfer between CPU and main memory

38 Processor 1/0
[~AIData transfer between CPU and I/O module

36 Data processing
[~AISome arithmetic or logical operation on data

& Control
[~lAlteration of sequence of operations
[~le.g. jump

¢ Combination of above




Hypothetical Machine

& Instruction Format - Address range?

Opcode | Address

0

34

36 Integer Format - Data range?

15

S

Magnitude

0

1

36 Registers

[~IPC = Program Counter, IR = Instruction Register, AC =
Accumulator

&6 Partial List of Opcodes
[~A10001 = Load AC from Memory
[~10010 = Store AC to Memory
[~10101 = Add to AC from Memory

15



Example of Program Execution

Memory CPLU Registers Memory CPU Registers
W1 9 4 0 |30 0/PC |300[1 9 40 3 0 0frC
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Modifications to Instruction
Cycle

& Simple Example
[~lAlways added one to PC
[AlEntire operand fetched with instruction

& More complex examples
[AIMight need more complex instruction address calculation
[XIConsider a 64 bit processor, variable length instructions

[AlInstruction set design might require repeat trip to memory to
fetch operand

[X1In particular, if memory address range exceeds word size
[~A10perand store might require many trips to memory
[XIVector calculation



Instruction Cycle -
State Diagram
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Introduction to Interrupts

& We will have more to say about interrupts later!

&6 Interrupts are a mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of processing

& Four general classes of interrupts
[~AIProgram - e.g. overflow, division by zero
[~ Timer
[XIGenerated by internal processor timer
[XIUsed in pre-emptive multi-tasking
[A11/0O - from I/O controller

Hardware failure
[Xle.g. memory parity error

& Particularly useful when one module is much slower than
another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)



Interrupt Examples

Llser
Proveram

WHITT

WRITE

[A0)

Program
| | ,,1 - T1
I ]
! A €
| AT '
I b ——
| [ | [40)
u P : Commanid
o ! | - T
b= | I
l e ' (5]
I ! -‘r--h_ I
| ! It IR
I f / ND
| ! £
I
i

A

14
15
!I.I' s
/

E r

I
i
¢

Llser
Program

WHITE

WRITE

WRITE

Iff s -

-

[0
E‘m_-_ﬁHu

10
Comumand

[nterrupt
Handler

(3

NI

Llser
Program

WRITE

- ——————

g, —————

r T-\_—\..

1\.:-—________
- -
-

¥

[0
Program
,-': -1
|
@
1
- [0

Comumanid

[nterrupt
Handler

@

NI

{a) No intermupts

by Interrupts; short O wail

(¢h Interrupts; long 10wl




Interrupt Cycle

&8 Added to instruction cycle

& Processor checks for interrupt
[AlIndicated by an interrupt signal

& If no interrupt, fetch next instruction

& If interrupt pending:
[A1Suspend execution of current program
[~lSave context (what does this mean?)
[~1Set PC to start address of interrupt handler routine
Process interrupt
[~lRestore context and continue interrupted program



Instruction Cycle (with
Interrupts) - State Diagram
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Multiple Interrupts

& Disable interrupts — Sequential Processing

[~IProcessor will ignore further interrupts whilst
processing one interrupt

[AlInterrupts remain pending and are checked after first
interrupt has been processed

[AlInterrupts handled in sequence as they occur

&t Define priorities — Nested Processing

[~lLow priority interrupts can be interrupted by higher
priority interrupts

[AIWhen higher priority interrupt has been processed,
processor returns to previous interrupt




Multiple Interrupts - Sequential

Interrupt
User Program Handler X
= I 1
= | _ I
= | __,,.-"f I
= | P |
= | - |
— e |
= : Ir"" |
= |- |
E e Sl SR :
E IH-\"-—\, _|.‘_-‘_-‘-_l”'-\-_:—_—|_--.‘__‘_
= | [~ T Interrupt
— - —— .
= : e~ e Handler ¥
= S _'-l__l__l_
= I 1-\'-\-.. e
= | e |
— I H‘"-uq_‘ |
— - |
= | -
= | T |
— ~ . I
= | s |
— | -\H"\-\._‘\_ I
—t - I
= | -
— v - |
=]

Disabled Interrupts — Nice and Simple



Multiple Interrupts - Nested
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How to handle state with an arbitrary number of interrupts?



Sample Time Sequence of
Multiple Interrupts

Priority 2 Priority 5 Priority 4
User Program Printer ISR Comm ISR Disk ISR
=0 t=15
t=10
<?25
t=25
\ \
t=40 t=35

Disk can’t interrupt higher priority Comm
Note: Often low numbers are higher priority




Connecting

F All the units must be connected

& Different type of connection for different type of
unit

[~IMemory

AlInput/Output

~ICPU




Memory Connection

& Memory typically consists of N words of equal length
addressed from 0 to N-1

3 Receives and sends data
[~AITo Processor
[~A1To I/O Device

& Receives addresses (of locations)
&8 Receives control signals

[~AIRead

[~ Write

[~ Timing



Input/Output Connection(1)

& Functionally, similar to memory from internal viewpoint
&6 Instead of N words as in memory, we have M ports

# Output

[~lReceive data from computer
[~A1Send data to peripheral

38 Input

[~1Receive data from peripheral
[~A1Send data to computer



Input/Output Connection(2)

> Receive control signals from computer

> Send control signals to peripherals
[~le.g. spin disk

&8 Receive addresses from computer

[~le.g. port number to identify peripheral

& Send interrupt signals (control)

QoD QoD




CPU Connection

&6 Sends control signals to other units
&8 Reads instruction and data

& Writes out data (after processing)

& Receives (& acts on) interrupts




Buses

&8 There are a number of possible interconnection
systems. The most common structure is the
bus

&t Single and multiple BUS structures are most
common

¢ e.g. Control/Address/Data bus (PC)
Fe.g. Unibus (DEC-PDP) — replaced the Omnibus




What is a Bus?

& A communication pathway connecting two or more
devices

&8 Usually broadcast
[~lEveryone listens, must share the medium
[~]Master — can read/write exclusively, only one master
[~1Slave — everyone else. Can monitor data but not produce
&6 Often grouped
[A1A number of channels in one bus
[Ale.g. 32 bit data bus is 32 separate single bit channels
& Power lines may not be shown

& Three major buses: data, address, control



Bus Interconnection Scheme

{ CPU Memory H soe [ Memory /O soe 1/0 H

Control Lines
[ 1] | L] | LI | [ 1]
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| | | | | | I

Data Lines




Data Bus

&6 Carries data
[~IRemember that there is no difference between
“data” and “instruction” at this level
8 Width is a key determinant of performance
[~18, 16, 32, 64 bit

[AlWhat if the data bus is 8 bits wide but instructions
are 16 bits long?

[AlWhat if the data bus is 64 bits wide but instructions
are 16 bits long?




Address bus

&6 Identify the source or destination of data
[A1In general, the address specifies a specific memory address or a
specific I/O port
& e.g. CPU needs to read an instruction (data) from a
given location in memory

&8 Bus width determines maximum memory capacity of
system

[~18086 has 20 bit address bus but 16 bit word size for 64k directly
addressable address space

[A1But it could address up to 1MB using a segmented memory
model

XIRAM: 0 — BFFFF, ROM: C0000 - FFFFF

XIDOS only allowed first 640K to be used, remaining memory for
BIOS, hardware controllers. Needed High-Memory Manager to
“break the 640K barrier”



Control Bus

& Control and timing information
[~ Determines what modules can use the data and address lines
[A1If a module wants to send data, it must (1) obtain permission to
use the bus, and (2) transfer data — which might be a request
for another module to send data
&6 Typical control lines
[~IMemory read
Memory write
[AI1/O read
[AIT/O write
Interrupt request
[~l Interrupt ACK
[~]Bus Request
[~1Bus Grant
[~lClock signals



Big and Yellow?

FEWhat do buses look like?
[AlParallel lines on circuit boards
[AIRibbon cables

[(AIStrip connectors on mother boards
[xle.g. PCI

[~1Sets of wires
&t Limited by physical proximity — time delays, fan
out, attenuation are all factors for long buses




Single Bus Problems

3£ Lots of devices on one bus leads to:
[~ Propagation delays

[XILong data paths mean that co-ordination of bus use can adversely affect
performance — bus skew, data arrives at slightly different times

[X1If aggregate data transfer approaches bus capacity. Could increase bus
width, but expensive

Device speed
[XIBus can’t transmit data faster than the slowest device

[XISlowest device may determine bus speed!

* Consider a high-speed network module and a slow serial port on the same
bus; must run at slow serial port speed so it can process data directed for it

Power problems

3 Most systems use multiple buses to overcome these
problems



Traditional (ISA)
(with cache)
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This approach breaks down as I/O devices need higher performance




High Performance Bus -
Mezzanine Architecture

Addresses higher speed I/O devices by moving up in the hierarchy

‘ Modem

Main
Menory
rOces Local Bus Cache System Bus
Processo {Bridge | AL :
SCSI Pl3%4 Graphic Videno LAN
High-5peed Bus
FAX Expansion iy
bus interface Serial

Expansion Bus
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Direct Memory Access

DMA Transfer from Disk to Memory
Bypasses the CPU

Memory

Without DMA : With DMA




DMA Flowchart for a Disk Transfer
(B )

l

CPU sets up disk for
DMA transfer

DMA device begins
transfer independent of
CPU

L4
L4
+
+,
*

" DMA device
L J ,~*  interrupts CPU

CPU executes r when finished
another process

( Continue )




Bus Types

S Dedicated

[~lSeparate data & address lines

> Multiplexed
[~AIShared lines

[~IConsider shared address, data lines
[XINeed separate Address valid or Data valid control line
XITime division multiplexing in this case

[~lAdvantage - fewer lines
[~IDisadvantages

[XIMore complex control
XIUltimate performance



Bus Arbitration

& More than one module may want to control the
bus

[~le.g. I/O module may need to send data to memory
and to the CPU

&8 But only one module may control bus at one
time
[~lArbitration decides who gets to use the bus

[~lArbitration must be fast or I/O devices might lose
data

&8 Arbitration may be centralized or distributed




Centralized Arbitration

&6 Single hardware device is responsible for
allocating bus access

[~1Bus Controller

[~lArbiter

#8 May be part of CPU or separate




Distributed Arbitration

& No single arbiter
#6 Each module may claim the bus

& Proper control logic on all modules so they behave to
share the bus

& Purpose of both distributed and centralized is to
designate the master

& The recipient of a data transfer is the slave

& Many types of arbitration algorithms: round-robin,
priority, etc.



Bus Arbitration
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Bus Arbitration
Implementations - Centralized

3£ Centralized

[A1If a device wants the bus, assert bus request
[~lArbiter decides whether or not to send bus grant
Bus grant travels through daisy-chain of devices

[A1If device wants the bus, it uses it and does not propagate bus
grant down the line. Otherwise it propagates the bus grant.

[~lElectrically close devices to arbiter get first priority
& Centralized with Multiple Priority Levels

[~A1Can add multiple priority levels, grants, for more flexible
system. Arbiter can issue bus grant on only highest priority line



Bus Arbitration Implementation
- Decentralized

& Decentralized

[AIIf don't want the bus, propagate bus grant down the
line

[~AITo acquire bus, see if bus is idle and bus grant is on

[X1If bus grant is off, may not become master, propagate
negative bus grant

[X1If bus grant is on, propagate negative bus grant
[~AIWhen dust settles, only one device has bus grant
[~lAsserts busy on and begins transfer
[~lLeftmost device that wants the bus gets it




Timing

5 Co-ordination of events on bus

> Synchronous

[~lIEvents determined by clock signals
[~lControl Bus includes clock line

[~IA single 1-0 is a bus cycle

[AIAIl devices can read clock line
[~lUsually sync on leading edge
[~lUsually a single cycle for an event

Qo QoD




100 MHz Bus Clock

1 01 0 1 0 1 0

- ' +
Crystal |_| _l Logical 1 (+5V)
Oscillator —» <«— Logical 0 (0V)
e

10 ns

100 million cycles per second
1 cycle in (1/100,000,000) seconds = 0.0000001s =10 ns

In reality, the clock is a bit more sawtoothed

/N N\



Synchronous Timing Diagram
Read Operation Timing

Clock

Start

Read

Address
Lines

Dala
Lines

Acknowledge

Indicates read/address lines valid, noticed by memory

Indicates we want to read, not write

Address from memory we want

delay

Data from memory

Indicates data lines valid




Synchronous - Disadvantages

are some disadvantages

[~lEverything done in multiples of c
finishing in 3.1 cycles takes 4 cyc

AIWith a mixture of fast and slow ¢
wait for the slowest device

&6 Although synchronous clocks are simple, there

ock, so something
es

evices, we have to

[X]IFaster devices can't run at their capacity, all devices are tied

to a fixed clock rate

[XIConsider memory device speed faster than 10ns, no

speedup increase for 100Mhz clock

&8 One solution: Use asynchronous bus



Asynchronous Bus

S No clock

5 Occurrence of one event on the bus follows and
depends on a previous event

& Requires tracking of state, hard to debug, but
potential for higher performance

Qnp QD

& Also used with networking
[~IProblem with “drift” and loss of synchronization
[~AISome use self-clocking codes, e.g. Ethernet




Asynchronous Timing Diagram

Asserted once read/address lines stabilize
Deasserted when finished reading
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