
SRI BALAJI CHOCKALINGAM

ENGINEERING COLLEGE, ARNI
William Stallings

Computer Organization

and Architecture

Chapter 3

Instruction Cycle Review

System Buses

Faculty Name : T.Karthikeyan

HOD/AP/CSE

Architecture Review - Program

Concept

Hardwired systems are inflexible

Lots of work to re-wire, or re-toggle

General purpose hardware can do different
tasks, given correct control signals

Instead of re-wiring, supply a new set of control
signals

Instruction Codes
Instruction

Interpreter

Control

Signals

General

Purpose

Logic

Data

Results

What is a program?

Software

A sequence of steps

For each step, an arithmetic or logical operation is
done

For each operation, a different set of control signals
is needed – i.e. an instruction

Function of Control Unit

For each operation a unique code is provided

e.g. ADD, MOVE

A hardware segment accepts the code and
issues the control signals

We have a computer!

Components

Central Processing Unit

Control Unit

Arithmetic and Logic Unit

Data and instructions need to get into the CPU
and results out

Input/Output

Temporary storage of code and results is
needed

Main memory

Computer Components:

Top Level View

Simplified Instruction Cycle

Two steps:

Fetch

Execute

Fetch Cycle

Program Counter (PC) holds address of next
instruction to fetch

Processor fetches instruction from memory
location pointed to by PC

Increment PC

Unless told otherwise

Instruction loaded into Instruction Register (IR)

Processor interprets instruction and performs
required actions

Execute Cycle

Processor-memory

data transfer between CPU and main memory

Processor I/O

Data transfer between CPU and I/O module

Data processing

Some arithmetic or logical operation on data

Control

Alteration of sequence of operations

e.g. jump

Combination of above

Hypothetical Machine

 Instruction Format - Address range?

 Integer Format - Data range?

 Registers
PC = Program Counter, IR = Instruction Register, AC =

Accumulator

 Partial List of Opcodes
0001 = Load AC from Memory

0010 = Store AC to Memory

0101 = Add to AC from Memory

Opcode Address

S Magnitude

0 3 4 15

0 1 15

Example of Program Execution

Modifications to Instruction

Cycle

 Simple Example

Always added one to PC

Entire operand fetched with instruction

 More complex examples

Might need more complex instruction address calculation

Consider a 64 bit processor, variable length instructions

Instruction set design might require repeat trip to memory to
fetch operand

In particular, if memory address range exceeds word size

Operand store might require many trips to memory

Vector calculation

Instruction Cycle -

State Diagram

Start Here

Introduction to Interrupts

We will have more to say about interrupts later!

 Interrupts are a mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of processing

 Four general classes of interrupts
Program - e.g. overflow, division by zero

Timer

Generated by internal processor timer

Used in pre-emptive multi-tasking

I/O - from I/O controller

Hardware failure

e.g. memory parity error

 Particularly useful when one module is much slower than
another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)

Interrupt Examples

Interrupt Cycle

 Added to instruction cycle

 Processor checks for interrupt

Indicated by an interrupt signal

 If no interrupt, fetch next instruction

 If interrupt pending:

Suspend execution of current program

Save context (what does this mean?)

Set PC to start address of interrupt handler routine

Process interrupt

Restore context and continue interrupted program

Instruction Cycle (with

Interrupts) - State Diagram

Multiple Interrupts

Disable interrupts – Sequential Processing
Processor will ignore further interrupts whilst

processing one interrupt

Interrupts remain pending and are checked after first
interrupt has been processed

Interrupts handled in sequence as they occur

Define priorities – Nested Processing
Low priority interrupts can be interrupted by higher

priority interrupts

When higher priority interrupt has been processed,
processor returns to previous interrupt

Multiple Interrupts - Sequential

Disabled Interrupts – Nice and Simple

Multiple Interrupts - Nested

How to handle state with an arbitrary number of interrupts?

Sample Time Sequence of

Multiple Interrupts

User Program Printer ISR Comm ISR Disk ISR

t=10

t=40

t=15

t=25
t=25

t=35

t=0

Priority 2 Priority 5 Priority 4

Disk can’t interrupt higher priority Comm

Note: Often low numbers are higher priority

Connecting

All the units must be connected

Different type of connection for different type of
unit

Memory

Input/Output

CPU

Memory Connection

 Memory typically consists of N words of equal length
addressed from 0 to N-1

 Receives and sends data

To Processor

To I/O Device

 Receives addresses (of locations)

 Receives control signals

Read

Write

Timing

Input/Output Connection(1)

 Functionally, similar to memory from internal viewpoint

 Instead of N words as in memory, we have M ports

 Output

Receive data from computer

Send data to peripheral

 Input

Receive data from peripheral

Send data to computer

Input/Output Connection(2)

Receive control signals from computer

Send control signals to peripherals

e.g. spin disk

Receive addresses from computer

e.g. port number to identify peripheral

Send interrupt signals (control)

CPU Connection

Sends control signals to other units

Reads instruction and data

Writes out data (after processing)

Receives (& acts on) interrupts

Buses

There are a number of possible interconnection
systems. The most common structure is the
bus

Single and multiple BUS structures are most
common

e.g. Control/Address/Data bus (PC)

e.g. Unibus (DEC-PDP) – replaced the Omnibus

What is a Bus?

 A communication pathway connecting two or more
devices

 Usually broadcast
Everyone listens, must share the medium

Master – can read/write exclusively, only one master

Slave – everyone else. Can monitor data but not produce

 Often grouped
A number of channels in one bus

e.g. 32 bit data bus is 32 separate single bit channels

 Power lines may not be shown

 Three major buses: data, address, control

Bus Interconnection Scheme

Data Bus

Carries data

Remember that there is no difference between
“data” and “instruction” at this level

Width is a key determinant of performance

8, 16, 32, 64 bit

What if the data bus is 8 bits wide but instructions
are 16 bits long?

What if the data bus is 64 bits wide but instructions
are 16 bits long?

Address bus

 Identify the source or destination of data
In general, the address specifies a specific memory address or a

specific I/O port

 e.g. CPU needs to read an instruction (data) from a
given location in memory

 Bus width determines maximum memory capacity of
system
8086 has 20 bit address bus but 16 bit word size for 64k directly

addressable address space

But it could address up to 1MB using a segmented memory
model

RAM: 0 – BFFFF, ROM: C0000 - FFFFF

DOS only allowed first 640K to be used, remaining memory for
BIOS, hardware controllers. Needed High-Memory Manager to
“break the 640K barrier”

Control Bus

 Control and timing information
Determines what modules can use the data and address lines

If a module wants to send data, it must (1) obtain permission to
use the bus, and (2) transfer data – which might be a request
for another module to send data

 Typical control lines
Memory read

Memory write

I/O read

I/O write

Interrupt request

Interrupt ACK

Bus Request

Bus Grant

Clock signals

Big and Yellow?

What do buses look like?

Parallel lines on circuit boards

Ribbon cables

Strip connectors on mother boards

e.g. PCI

Sets of wires

Limited by physical proximity – time delays, fan
out, attenuation are all factors for long buses

Single Bus Problems

 Lots of devices on one bus leads to:
Propagation delays

Long data paths mean that co-ordination of bus use can adversely affect
performance – bus skew, data arrives at slightly different times

If aggregate data transfer approaches bus capacity. Could increase bus
width, but expensive

Device speed

Bus can’t transmit data faster than the slowest device

Slowest device may determine bus speed!
• Consider a high-speed network module and a slow serial port on the same

bus; must run at slow serial port speed so it can process data directed for it

Power problems

 Most systems use multiple buses to overcome these
problems

Traditional (ISA)

(with cache)

Buffers data

transfers

between

system,

expansion bus

This approach breaks down as I/O devices need higher performance

High Performance Bus –

Mezzanine Architecture

Addresses higher speed I/O devices by moving up in the hierarchy

Direct Memory Access

Bus Types

Dedicated
Separate data & address lines

Multiplexed
Shared lines

Consider shared address, data lines
Need separate Address valid or Data valid control line

Time division multiplexing in this case

Advantage - fewer lines

Disadvantages
More complex control

Ultimate performance

Bus Arbitration

More than one module may want to control the
bus
e.g. I/O module may need to send data to memory

and to the CPU

But only one module may control bus at one
time
Arbitration decides who gets to use the bus

Arbitration must be fast or I/O devices might lose
data

Arbitration may be centralized or distributed

Centralized Arbitration

Single hardware device is responsible for
allocating bus access

Bus Controller

Arbiter

May be part of CPU or separate

Distributed Arbitration

 No single arbiter

 Each module may claim the bus

 Proper control logic on all modules so they behave to
share the bus

 Purpose of both distributed and centralized is to
designate the master

 The recipient of a data transfer is the slave

 Many types of arbitration algorithms: round-robin,
priority, etc.

Daisy Chaining

of devices

What if a device breaks? Devices to left higher priority

Bus Arbitration

Implementations – Centralized

 Centralized

If a device wants the bus, assert bus request

Arbiter decides whether or not to send bus grant

Bus grant travels through daisy-chain of devices

If device wants the bus, it uses it and does not propagate bus
grant down the line. Otherwise it propagates the bus grant.

Electrically close devices to arbiter get first priority

 Centralized with Multiple Priority Levels

Can add multiple priority levels, grants, for more flexible
system. Arbiter can issue bus grant on only highest priority line

Bus Arbitration Implementation

- Decentralized

Decentralized

If don’t want the bus, propagate bus grant down the
line

To acquire bus, see if bus is idle and bus grant is on

If bus grant is off, may not become master, propagate
negative bus grant

If bus grant is on, propagate negative bus grant

When dust settles, only one device has bus grant

Asserts busy on and begins transfer

Leftmost device that wants the bus gets it

Timing

Co-ordination of events on bus

Synchronous

Events determined by clock signals

Control Bus includes clock line

A single 1-0 is a bus cycle

All devices can read clock line

Usually sync on leading edge

Usually a single cycle for an event

In reality, the clock is a bit more sawtoothed

100 million cycles per second

1 cycle in (1/100,000,000) seconds = 0.0000001s = 10 ns

Synchronous Timing Diagram

Read Operation Timing

delay

Indicates read/address lines valid, noticed by memory

Indicates we want to read, not write

Address from memory we want

Data from memory

Indicates data lines valid

Synchronous - Disadvantages

Although synchronous clocks are simple, there
are some disadvantages
Everything done in multiples of clock, so something

finishing in 3.1 cycles takes 4 cycles

With a mixture of fast and slow devices, we have to
wait for the slowest device
Faster devices can’t run at their capacity, all devices are tied

to a fixed clock rate

Consider memory device speed faster than 10ns, no
speedup increase for 100Mhz clock

One solution: Use asynchronous bus

Asynchronous Bus

No clock

Occurrence of one event on the bus follows and
depends on a previous event

Requires tracking of state, hard to debug, but
potential for higher performance

Also used with networking
Problem with “drift” and loss of synchronization

Some use self-clocking codes, e.g. Ethernet

Asynchronous Timing Diagram

Master sync

Slave sync

Asserted once read/address lines stabilize

Slave = memory, ACK’s master sync

Master reads the data from the data bus

Slave places requested data on bus

Deasserted when finished reading

